FlintyLemming e1911954ed Init
2024-09-25 15:18:31 +08:00

214 lines
9.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import folder_paths
import torch
import numpy as np
import time
from PIL import Image
current_directory = os.path.dirname(os.path.abspath(__file__))
comfyui_models_dir = folder_paths.models_dir
comfy_temp_dir = folder_paths.get_temp_directory()
temp_txt_path = os.path.join(comfy_temp_dir, "AnyText_temp.txt")
class AnyText_loader:
@classmethod
def INPUT_TYPES(cls):
font_list = os.listdir(os.path.join(comfyui_models_dir, "fonts"))
checkpoints_list = folder_paths.get_filename_list("checkpoints")
clip_list = os.listdir(os.path.join(comfyui_models_dir, "clip"))
font_list.insert(0, "Auto_DownLoad")
checkpoints_list.insert(0, "Auto_DownLoad")
clip_list.insert(0, "Auto_DownLoad")
return {
"required": {
"font": (font_list, ),
"ckpt_name": (checkpoints_list, ),
"clip": (clip_list, ),
"translator": (["utrobinmv/t5_translate_en_ru_zh_small_1024", "damo/nlp_csanmt_translation_zh2en"],{"default": "utrobinmv/t5_translate_en_ru_zh_small_1024"}),
# "show_debug": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("AnyText_Loader", )
RETURN_NAMES = ("AnyText_Loader", )
FUNCTION = "AnyText_loader_fn"
CATEGORY = "ExtraModels/AnyText"
TITLE = "AnyText Loader"
def AnyText_loader_fn(self,
font,
ckpt_name,
clip,
translator,
# show_debug
):
font_path = os.path.join(comfyui_models_dir, "fonts", font)
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
cfg_path = os.path.join(current_directory, 'models_yaml', 'anytext_sd15.yaml')
if clip != 'Auto_DownLoad':
clip_path = os.path.join(comfyui_models_dir, "clip", clip)
else:
clip_path = clip
if translator != 'Auto_DownLoad':
translator_path = os.path.join(comfyui_models_dir, "prompt_generator", translator)
else:
translator_path = translator
#将输入参数合并到一个参数里面传递到.nodes
loader = (font_path + "|" + str(ckpt_path) + "|" + clip_path + "|" + translator_path + "|" + cfg_path)
# if show_debug == True:
# print(f'\033[93mloader(合并后的4个输入参数传递给nodes): {loader} \033[0m\n \
# \033[93mfont_path(字体): {font_path} \033[0m\n \
# \033[93mckpt_path(AnyText模型): {ckpt_path} \033[0m\n \
# \033[93mclip_path(clip模型): {clip_path} \033[0m\n \
# \033[93mtranslator_path(翻译模型): {translator_path} \033[0m\n \
# \033[93myaml_file(yaml配置文件): {cfg_path} \033[0m\n')
return (loader, )
class AnyText_translator:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": (["utrobinmv/t5_translate_en_ru_zh_small_1024", "damo/nlp_csanmt_translation_zh2en"],{"default": "utrobinmv/t5_translate_en_ru_zh_small_1024"}),
"prompt": ("STRING", {"default": "这里是单批次翻译文本输入。\n声明补充说,沃伦的同事都深感震惊,并且希望他能够投案自首。\n尽量输入单句文本,如果是多句长文本建议人工分句,否则可能出现漏译或未译等情况!!!\n使用换行,效果可能更佳。", "multiline": True}),
"Batch_prompt": ("STRING", {"default": "这里是多批次翻译文本输入,使用换行进行分割。\n天上掉馅饼啦,快去看超人!!!\n飞流直下三千尺,疑似银河落九天。\n启用Batch_Newline表示输出的翻译会按换行输入进行二次换行,否则是用空格合并起来的整篇文本。", "multiline": True}),
"t5_Target_Language": (["en", "zh", "ru", ],{"default": "en"}),
"if_Batch": ("BOOLEAN", {"default": False}),
"Batch_Newline" :("BOOLEAN", {"default": True}),
"device": (["auto", "cuda", "cpu", "mps", "xpu"],{"default": "auto"}),
},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("text",)
CATEGORY = "ExtraModels/AnyText"
FUNCTION = "AnyText_translator"
TITLE = "AnyText Translator"
def AnyText_translator(self, prompt, model, Batch_prompt, if_Batch, device, Batch_Newline, t5_Target_Language):
device = get_device_by_name(device)
# 使用换行(\n)作为分隔符
Batch_prompt = Batch_prompt.split("\n")
input_sequence = prompt
if model == 'damo/nlp_csanmt_translation_zh2en':
sttime = time.time()
if if_Batch == True:
input_sequence = Batch_prompt
# 用特定的连接符<SENT_SPLIT>,将多个句子进行串联
input_sequence = '<SENT_SPLIT>'.join(input_sequence)
if os.access(os.path.join(comfyui_models_dir, "prompt_generator", "nlp_csanmt_translation_zh2en", "tf_ckpts", "ckpt-0.data-00000-of-00001"), os.F_OK):
zh2en_path = os.path.join(comfyui_models_dir, 'prompt_generator', 'nlp_csanmt_translation_zh2en')
else:
zh2en_path = "damo/nlp_csanmt_translation_zh2en"
if not is_module_imported('pipeline'):
from modelscope.pipelines import pipeline
if not is_module_imported('Tasks'):
from modelscope.utils.constant import Tasks
if device == 'cuda':
pipeline_ins = pipeline(task=Tasks.translation, model=zh2en_path, device='gpu')
outputs = pipeline_ins(input=input_sequence)
if if_Batch == True:
results = outputs['translation'].split('<SENT_SPLIT>')
if Batch_Newline == True:
results = '\n\n'.join(results)
else:
results = ' '.join(results)
else:
results = outputs['translation']
endtime = time.time()
print("\033[93mTime for translating(翻译耗时): ", endtime - sttime, "\033[0m")
del pipeline_ins
if torch.cuda.is_available():
torch.cuda.empty_cache()
else:
if if_Batch == True:
input_sequence = Batch_prompt
# 用特定的连接符<SENT_SPLIT>,将多个句子进行串联
input_sequence = '|'.join(input_sequence)
self.zh2en_path = os.path.join(folder_paths.models_dir, "prompt_generator", "models--utrobinmv--t5_translate_en_ru_zh_small_1024")
if not os.access(os.path.join(self.zh2en_path, "model.safetensors"), os.F_OK):
self.zh2en_path = "utrobinmv/t5_translate_en_ru_zh_small_1024"
outputs = t5_translate_en_ru_zh(t5_Target_Language, input_sequence, self.zh2en_path, device)[0]
if if_Batch == True:
results = outputs.split('| ')
if Batch_Newline == True:
results = '\n\n'.join(results)
else:
results = ' '.join(results)
else:
results = outputs
with open(temp_txt_path, "w", encoding="UTF-8") as text_file:
text_file.write(results)
return (results, )
def is_module_imported(module_name):
try:
__import__(module_name)
except ImportError:
return False
else:
return True
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def is_folder_exist(folder_path):
result = os.path.exists(folder_path)
return result
def get_device_by_name(device):
if device == 'auto':
try:
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
elif torch.xpu.is_available():
device = "xpu"
except:
raise AttributeError("What's your device(到底用什么设备跑的)")
print("\033[93mUse Device(使用设备):", device, "\033[0m")
return device
# Node class and display name mappings
NODE_CLASS_MAPPINGS = {
"AnyText_loader": AnyText_loader,
"AnyText_translator": AnyText_translator,
}
def t5_translate_en_ru_zh(Target_Language, prompt, model_path, device):
# prefix = 'translate to en: '
sttime = time.time()
if not is_module_imported('T5ForConditionalGeneration'):
from transformers import T5ForConditionalGeneration
if not is_module_imported('T5Tokenizer'):
from transformers import T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained(model_path,)
tokenizer = T5Tokenizer.from_pretrained(model_path)
if Target_Language == 'zh':
prefix = 'translate to zh: '
elif Target_Language == 'en':
prefix = 'translate to en: '
else:
prefix = 'translate to ru: '
src_text = prefix + prompt
input_ids = tokenizer(src_text, return_tensors="pt")
generated_tokens = model.generate(**input_ids).to(device, torch.float32)
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
model.to('cpu')
endtime = time.time()
print("\033[93mTime for translating(翻译耗时): ", endtime - sttime, "\033[0m")
return result
def comfy_tensor_Image2np_Image(self,comfy_tensor_image):
comfyimage = comfy_tensor_image.numpy()[0] * 255
image_np = comfyimage.astype(np.uint8)
image = Image.fromarray(image_np)
return image