''' Copyright (c) Alibaba, Inc. and its affiliates. ''' import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import cv2 import numpy as np import math import traceback from easydict import EasyDict as edict import time from .ocr_recog.RecModel import RecModel import torch import torch.nn.functional as F from skimage.transform._geometric import _umeyama as get_sym_mat def min_bounding_rect(img): ret, thresh = cv2.threshold(img, 127, 255, 0) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if len(contours) == 0: print('Bad contours, using fake bbox...') return np.array([[0, 0], [100, 0], [100, 100], [0, 100]]) max_contour = max(contours, key=cv2.contourArea) rect = cv2.minAreaRect(max_contour) box = cv2.boxPoints(rect) box = np.int0(box) # sort x_sorted = sorted(box, key=lambda x: x[0]) left = x_sorted[:2] right = x_sorted[2:] left = sorted(left, key=lambda x: x[1]) (tl, bl) = left right = sorted(right, key=lambda x: x[1]) (tr, br) = right if tl[1] > bl[1]: (tl, bl) = (bl, tl) if tr[1] > br[1]: (tr, br) = (br, tr) return np.array([tl, tr, br, bl]) def adjust_image(box, img): pts1 = np.float32([box[0], box[1], box[2], box[3]]) width = max(np.linalg.norm(pts1[0]-pts1[1]), np.linalg.norm(pts1[2]-pts1[3])) height = max(np.linalg.norm(pts1[0]-pts1[3]), np.linalg.norm(pts1[1]-pts1[2])) pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]]) # get transform matrix M = get_sym_mat(pts1, pts2, estimate_scale=True) C, H, W = img.shape T = np.array([[2 / W, 0, -1], [0, 2 / H, -1], [0, 0, 1]]) theta = np.linalg.inv(T @ M @ np.linalg.inv(T)) theta = torch.from_numpy(theta[:2, :]).unsqueeze(0).type(torch.float32).to(img.device) grid = F.affine_grid(theta, torch.Size([1, C, H, W]), align_corners=True) result = F.grid_sample(img.unsqueeze(0), grid, align_corners=True) result = torch.clamp(result.squeeze(0), 0, 255) # crop result = result[:, :int(height), :int(width)] return result ''' mask: numpy.ndarray, mask of textual, HWC src_img: torch.Tensor, source image, CHW ''' def crop_image(src_img, mask): box = min_bounding_rect(mask) result = adjust_image(box, src_img) if len(result.shape) == 2: result = torch.stack([result]*3, axis=-1) return result def create_predictor(model_dir=None, model_lang='ch', is_onnx=False): model_file_path = model_dir if model_file_path is not None and not os.path.exists(model_file_path): raise ValueError("not find model file path {}".format(model_file_path)) if is_onnx: import onnxruntime as ort sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider']) # 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider' return sess else: if model_lang == 'ch': n_class = 6625 elif model_lang == 'en': n_class = 97 else: raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}") rec_config = edict( in_channels=3, backbone=edict(type='MobileNetV1Enhance', scale=0.5, last_conv_stride=[1, 2], last_pool_type='avg'), neck=edict(type='SequenceEncoder', encoder_type="svtr", dims=64, depth=2, hidden_dims=120, use_guide=True), head=edict(type='CTCHead', fc_decay=0.00001, out_channels=n_class, return_feats=True) ) rec_model = RecModel(rec_config) if model_file_path is not None: rec_model.load_state_dict(torch.load(model_file_path, map_location="cpu")) rec_model.eval() return rec_model.eval() def _check_image_file(path): img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff'} return any([path.lower().endswith(e) for e in img_end]) def get_image_file_list(img_file): imgs_lists = [] if img_file is None or not os.path.exists(img_file): raise Exception("not found any img file in {}".format(img_file)) if os.path.isfile(img_file) and _check_image_file(img_file): imgs_lists.append(img_file) elif os.path.isdir(img_file): for single_file in os.listdir(img_file): file_path = os.path.join(img_file, single_file) if os.path.isfile(file_path) and _check_image_file(file_path): imgs_lists.append(file_path) if len(imgs_lists) == 0: raise Exception("not found any img file in {}".format(img_file)) imgs_lists = sorted(imgs_lists) return imgs_lists class TextRecognizer(object): def __init__(self, args, predictor): self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")] self.rec_batch_num = args.rec_batch_num self.predictor = predictor self.chars = self.get_char_dict(args.rec_char_dict_path) self.char2id = {x: i for i, x in enumerate(self.chars)} self.is_onnx = not isinstance(self.predictor, torch.nn.Module) self.use_fp16 = args.use_fp16 # img: CHW def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape assert imgC == img.shape[0] imgW = int((imgH * max_wh_ratio)) h, w = img.shape[1:] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = torch.nn.functional.interpolate( img.unsqueeze(0), size=(imgH, resized_w), mode='bilinear', align_corners=True, ) resized_image /= 255.0 resized_image -= 0.5 resized_image /= 0.5 padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device) padding_im[:, :, 0:resized_w] = resized_image[0] return padding_im # img_list: list of tensors with shape chw 0-255 def pred_imglist(self, img_list, show_debug=False): img_num = len(img_list) assert img_num > 0 # Calculate the aspect ratio of all text bars width_list = [] for img in img_list: width_list.append(img.shape[2] / float(img.shape[1])) # Sorting can speed up the recognition process indices = torch.from_numpy(np.argsort(np.array(width_list))) batch_num = self.rec_batch_num preds_all = [None] * img_num preds_neck_all = [None] * img_num for beg_img_no in range(0, img_num, batch_num): end_img_no = min(img_num, beg_img_no + batch_num) norm_img_batch = [] imgC, imgH, imgW = self.rec_image_shape[:3] max_wh_ratio = imgW / imgH for ino in range(beg_img_no, end_img_no): h, w = img_list[indices[ino]].shape[1:] if h > w * 1.2: img = img_list[indices[ino]] img = torch.transpose(img, 1, 2).flip(dims=[1]) img_list[indices[ino]] = img h, w = img.shape[1:] # wh_ratio = w * 1.0 / h # max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio for ino in range(beg_img_no, end_img_no): norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) if self.use_fp16: norm_img = norm_img.half() norm_img = norm_img.unsqueeze(0) norm_img_batch.append(norm_img) norm_img_batch = torch.cat(norm_img_batch, dim=0) if show_debug: for i in range(len(norm_img_batch)): _img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy() _img = (_img + 0.5)*255 _img = _img[:, :, ::-1] file_name = f'{indices[beg_img_no + i]}' if os.path.exists(file_name + '.jpg'): file_name += '_2' # ori image cv2.imwrite(file_name + '.jpg', _img) if self.is_onnx: input_dict = {} input_dict[self.predictor.get_inputs()[0].name] = norm_img_batch.detach().cpu().numpy() outputs = self.predictor.run(None, input_dict) preds = {} preds['ctc'] = torch.from_numpy(outputs[0]) preds['ctc_neck'] = [torch.zeros(1)] * img_num else: preds = self.predictor(norm_img_batch) for rno in range(preds['ctc'].shape[0]): preds_all[indices[beg_img_no + rno]] = preds['ctc'][rno] preds_neck_all[indices[beg_img_no + rno]] = preds['ctc_neck'][rno] return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0) def get_char_dict(self, character_dict_path): character_str = [] with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") character_str.append(line) dict_character = list(character_str) dict_character = ['sos'] + dict_character + [' '] # eos is space return dict_character def get_text(self, order): char_list = [self.chars[text_id] for text_id in order] return ''.join(char_list) def decode(self, mat): text_index = mat.detach().cpu().numpy().argmax(axis=1) ignored_tokens = [0] selection = np.ones(len(text_index), dtype=bool) selection[1:] = text_index[1:] != text_index[:-1] for ignored_token in ignored_tokens: selection &= text_index != ignored_token return text_index[selection], np.where(selection)[0] def get_ctcloss(self, preds, gt_text, weight): if not isinstance(weight, torch.Tensor): weight = torch.tensor(weight).to(preds.device) ctc_loss = torch.nn.CTCLoss(reduction='none') log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC targets = [] target_lengths = [] for t in gt_text: targets += [self.char2id.get(i, len(self.chars)-1) for i in t] target_lengths += [len(t)] targets = torch.tensor(targets).to(preds.device) target_lengths = torch.tensor(target_lengths).to(preds.device) input_lengths = torch.tensor([log_probs.shape[0]]*(log_probs.shape[1])).to(preds.device) loss = ctc_loss(log_probs, targets, input_lengths, target_lengths) loss = loss / input_lengths * weight return loss def main(): rec_model_dir = "./ocr_weights/ppv3_rec.pth" predictor = create_predictor(rec_model_dir) args = edict() args.rec_image_shape = "3, 48, 320" args.rec_char_dict_path = './ocr_weights/ppocr_keys_v1.txt' args.rec_batch_num = 6 text_recognizer = TextRecognizer(args, predictor) image_dir = './test_imgs_cn' gt_text = ['韩国小馆']*14 image_file_list = get_image_file_list(image_dir) valid_image_file_list = [] img_list = [] for image_file in image_file_list: img = cv2.imread(image_file) if img is None: print("error in loading image:{}".format(image_file)) continue valid_image_file_list.append(image_file) img_list.append(torch.from_numpy(img).permute(2, 0, 1).float()) try: tic = time.time() times = [] for i in range(10): preds, _ = text_recognizer.pred_imglist(img_list) # get text preds_all = preds.softmax(dim=2) times += [(time.time()-tic)*1000.] tic = time.time() print(times) print(np.mean(times[1:]) / len(preds_all)) weight = np.ones(len(gt_text)) loss = text_recognizer.get_ctcloss(preds, gt_text, weight) for i in range(len(valid_image_file_list)): pred = preds_all[i] order, idx = text_recognizer.decode(pred) text = text_recognizer.get_text(order) print(f'{valid_image_file_list[i]}: pred/gt="{text}"/"{gt_text[i]}", loss={loss[i]:.2f}') except Exception as E: print(traceback.format_exc(), E) if __name__ == "__main__": main()