import os import torch from omegaconf import OmegaConf from ..ldm.util import instantiate_from_config def get_state_dict(d): return d.get('state_dict', d) def load_state_dict(ckpt_path, location='cpu'): _, extension = os.path.splitext(ckpt_path) if extension.lower() == ".safetensors": import safetensors.torch state_dict = safetensors.torch.load_file(ckpt_path, device=location) else: state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location))) state_dict = get_state_dict(state_dict) print(f'Loaded state_dict from [{ckpt_path}]') return state_dict def create_model(config_path, cond_stage_path=None, use_fp16=False): config = OmegaConf.load(config_path) if cond_stage_path: config.model.params.cond_stage_config.params.version = cond_stage_path # use pre-downloaded ckpts, in case blocked if use_fp16: config.model.params.use_fp16 = True config.model.params.control_stage_config.params.use_fp16 = True config.model.params.unet_config.params.use_fp16 = True model = instantiate_from_config(config.model).cpu() print(f'Loaded model config from [{config_path}]') return model