628 lines
28 KiB
Python
Raw Permalink Normal View History

2024-09-25 15:18:31 +08:00
import einops
import torch
import torch as th
import torch.nn as nn
import copy
from easydict import EasyDict as edict
from ..ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from einops import rearrange, repeat
from torchvision.utils import make_grid
from ..ldm.modules.attention import SpatialTransformer
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ..ldm.models.diffusion.ddpm import LatentDiffusion
from ..ldm.util import log_txt_as_img, exists, instantiate_from_config
# from ldm.models.diffusion.ddim import DDIMSampler
from .ddim_hacked import DDIMSampler
from ..ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from .recognizer import TextRecognizer, create_predictor
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class ControlledUnetModel(UNetModel):
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
hs = []
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
if self.use_fp16:
t_emb = t_emb.half()
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
if control is not None:
h += control.pop()
for i, module in enumerate(self.output_blocks):
if only_mid_control or control is None:
h = torch.cat([h, hs.pop()], dim=1)
else:
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
return self.out(h)
class ControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
glyph_channels,
position_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.use_fp16 = use_fp16
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.glyph_block = TimestepEmbedSequential(
conv_nd(dims, glyph_channels, 8, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 8, 8, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
)
self.position_block = TimestepEmbedSequential(
conv_nd(dims, position_channels, 8, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 8, 8, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 64, 3, padding=1, stride=2),
nn.SiLU(),
)
self.fuse_block = zero_module(conv_nd(dims, 256+64+4, model_channels, 3, padding=1))
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, text_info, timesteps, context, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
if self.use_fp16:
t_emb = t_emb.half()
emb = self.time_embed(t_emb)
# guided_hint from text_info
B, C, H, W = x.shape
glyphs = torch.cat(text_info['glyphs'], dim=1).sum(dim=1, keepdim=True)
positions = torch.cat(text_info['positions'], dim=1).sum(dim=1, keepdim=True)
enc_glyph = self.glyph_block(glyphs, emb, context)
enc_pos = self.position_block(positions, emb, context)
guided_hint = self.fuse_block(torch.cat([enc_glyph, enc_pos, text_info['masked_x']], dim=1))
outs = []
h = x.type(self.dtype)
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
return outs
class ControlLDM(LatentDiffusion):
def __init__(self, control_stage_config, control_key, glyph_key, position_key, only_mid_control, loss_alpha=0, loss_beta=0, with_step_weight=False, use_vae_upsample=False, latin_weight=1.0, embedding_manager_config=None, *args, **kwargs):
self.use_fp16 = kwargs.pop('use_fp16', False)
super().__init__(*args, **kwargs)
self.control_model = instantiate_from_config(control_stage_config)
self.control_key = control_key
self.glyph_key = glyph_key
self.position_key = position_key
self.only_mid_control = only_mid_control
self.control_scales = [1.0] * 13
self.loss_alpha = loss_alpha
self.loss_beta = loss_beta
self.with_step_weight = with_step_weight
self.use_vae_upsample = use_vae_upsample
self.latin_weight = latin_weight
if embedding_manager_config is not None and embedding_manager_config.params.valid:
self.embedding_manager = self.instantiate_embedding_manager(embedding_manager_config, self.cond_stage_model)
for param in self.embedding_manager.embedding_parameters():
param.requires_grad = True
else:
self.embedding_manager = None
if self.loss_alpha > 0 or self.loss_beta > 0 or self.embedding_manager:
if embedding_manager_config.params.emb_type == 'ocr':
self.text_predictor = create_predictor().eval()
args = edict()
args.rec_image_shape = "3, 48, 320"
args.rec_batch_num = 6
args.rec_char_dict_path = './ocr_recog/ppocr_keys_v1.txt'
args.use_fp16 = self.use_fp16
self.cn_recognizer = TextRecognizer(args, self.text_predictor)
for param in self.text_predictor.parameters():
param.requires_grad = False
if self.embedding_manager:
self.embedding_manager.recog = self.cn_recognizer
@torch.no_grad()
def get_input(self, batch, k, bs=None, *args, **kwargs):
if self.embedding_manager is None: # fill in full caption
self.fill_caption(batch)
x, c, mx = super().get_input(batch, self.first_stage_key, mask_k='masked_img', *args, **kwargs)
control = batch[self.control_key] # for log_images and loss_alpha, not real control
if bs is not None:
control = control[:bs]
control = control.to(self.device)
control = einops.rearrange(control, 'b h w c -> b c h w')
control = control.to(memory_format=torch.contiguous_format).float()
inv_mask = batch['inv_mask']
if bs is not None:
inv_mask = inv_mask[:bs]
inv_mask = inv_mask.to(self.device)
inv_mask = einops.rearrange(inv_mask, 'b h w c -> b c h w')
inv_mask = inv_mask.to(memory_format=torch.contiguous_format).float()
glyphs = batch[self.glyph_key]
gly_line = batch['gly_line']
positions = batch[self.position_key]
n_lines = batch['n_lines']
language = batch['language']
texts = batch['texts']
assert len(glyphs) == len(positions)
for i in range(len(glyphs)):
if bs is not None:
glyphs[i] = glyphs[i][:bs]
gly_line[i] = gly_line[i][:bs]
positions[i] = positions[i][:bs]
n_lines = n_lines[:bs]
glyphs[i] = glyphs[i].to(self.device)
gly_line[i] = gly_line[i].to(self.device)
positions[i] = positions[i].to(self.device)
glyphs[i] = einops.rearrange(glyphs[i], 'b h w c -> b c h w')
gly_line[i] = einops.rearrange(gly_line[i], 'b h w c -> b c h w')
positions[i] = einops.rearrange(positions[i], 'b h w c -> b c h w')
glyphs[i] = glyphs[i].to(memory_format=torch.contiguous_format).float()
gly_line[i] = gly_line[i].to(memory_format=torch.contiguous_format).float()
positions[i] = positions[i].to(memory_format=torch.contiguous_format).float()
info = {}
info['glyphs'] = glyphs
info['positions'] = positions
info['n_lines'] = n_lines
info['language'] = language
info['texts'] = texts
info['img'] = batch['img'] # nhwc, (-1,1)
info['masked_x'] = mx
info['gly_line'] = gly_line
info['inv_mask'] = inv_mask
return x, dict(c_crossattn=[c], c_concat=[control], text_info=info)
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
assert isinstance(cond, dict)
diffusion_model = self.model.diffusion_model
_cond = torch.cat(cond['c_crossattn'], 1)
_hint = torch.cat(cond['c_concat'], 1)
if self.use_fp16:
x_noisy = x_noisy.half()
control = self.control_model(x=x_noisy, timesteps=t, context=_cond, hint=_hint, text_info=cond['text_info'])
control = [c * scale for c, scale in zip(control, self.control_scales)]
eps = diffusion_model(x=x_noisy, timesteps=t, context=_cond, control=control, only_mid_control=self.only_mid_control)
return eps
def instantiate_embedding_manager(self, config, embedder):
model = instantiate_from_config(config, embedder=embedder)
return model
@torch.no_grad()
def get_unconditional_conditioning(self, N):
return self.get_learned_conditioning(dict(c_crossattn=[[""] * N], text_info=None))
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
if self.embedding_manager is not None and c['text_info'] is not None:
self.embedding_manager.encode_text(c['text_info'])
if isinstance(c, dict):
cond_txt = c['c_crossattn'][0]
else:
cond_txt = c
if self.embedding_manager is not None:
cond_txt = self.cond_stage_model.encode(cond_txt, embedding_manager=self.embedding_manager)
else:
cond_txt = self.cond_stage_model.encode(cond_txt)
if isinstance(c, dict):
c['c_crossattn'][0] = cond_txt
else:
c = cond_txt
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
def fill_caption(self, batch, place_holder='*'):
bs = len(batch['n_lines'])
cond_list = copy.deepcopy(batch[self.cond_stage_key])
for i in range(bs):
n_lines = batch['n_lines'][i]
if n_lines == 0:
continue
cur_cap = cond_list[i]
for j in range(n_lines):
r_txt = batch['texts'][j][i]
cur_cap = cur_cap.replace(place_holder, f'"{r_txt}"', 1)
cond_list[i] = cur_cap
batch[self.cond_stage_key] = cond_list
@torch.no_grad()
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
use_ema_scope=True,
**kwargs):
use_ddim = ddim_steps is not None
log = dict()
z, c = self.get_input(batch, self.first_stage_key, bs=N)
if self.cond_stage_trainable:
with torch.no_grad():
c = self.get_learned_conditioning(c)
c_crossattn = c["c_crossattn"][0][:N]
c_cat = c["c_concat"][0][:N]
text_info = c["text_info"]
text_info['glyphs'] = [i[:N] for i in text_info['glyphs']]
text_info['gly_line'] = [i[:N] for i in text_info['gly_line']]
text_info['positions'] = [i[:N] for i in text_info['positions']]
text_info['n_lines'] = text_info['n_lines'][:N]
text_info['masked_x'] = text_info['masked_x'][:N]
text_info['img'] = text_info['img'][:N]
N = min(z.shape[0], N)
n_row = min(z.shape[0], n_row)
log["reconstruction"] = self.decode_first_stage(z)
log["masked_image"] = self.decode_first_stage(text_info['masked_x'])
log["control"] = c_cat * 2.0 - 1.0
log["img"] = text_info['img'].permute(0, 3, 1, 2) # log source image if needed
# get glyph
glyph_bs = torch.stack(text_info['glyphs'])
glyph_bs = torch.sum(glyph_bs, dim=0) * 2.0 - 1.0
log["glyph"] = torch.nn.functional.interpolate(glyph_bs, size=(512, 512), mode='bilinear', align_corners=True,)
# fill caption
if not self.embedding_manager:
self.fill_caption(batch)
captions = batch[self.cond_stage_key]
log["conditioning"] = log_txt_as_img((512, 512), captions, size=16)
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if sample:
# get denoise row
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], "text_info": text_info},
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if unconditional_guidance_scale > 1.0:
uc_cross = self.get_unconditional_conditioning(N)
uc_cat = c_cat # torch.zeros_like(c_cat)
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross['c_crossattn'][0]], "text_info": text_info}
samples_cfg, tmps = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c_crossattn], "text_info": text_info},
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc_full,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
pred_x0 = False # wether log pred_x0
if pred_x0:
for idx in range(len(tmps['pred_x0'])):
pred_x0 = self.decode_first_stage(tmps['pred_x0'][idx])
log[f"pred_x0_{tmps['index'][idx]}"] = pred_x0
return log
@torch.no_grad()
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
ddim_sampler = DDIMSampler(self)
b, c, h, w = cond["c_concat"][0].shape
shape = (self.channels, h // 8, w // 8)
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, log_every_t=5, **kwargs)
return samples, intermediates
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.control_model.parameters())
if self.embedding_manager:
params += list(self.embedding_manager.embedding_parameters())
if not self.sd_locked:
# params += list(self.model.diffusion_model.input_blocks.parameters())
# params += list(self.model.diffusion_model.middle_block.parameters())
params += list(self.model.diffusion_model.output_blocks.parameters())
params += list(self.model.diffusion_model.out.parameters())
if self.unlockKV:
nCount = 0
for name, param in self.model.diffusion_model.named_parameters():
if 'attn2.to_k' in name or 'attn2.to_v' in name:
params += [param]
nCount += 1
print(f'Cross attention is unlocked, and {nCount} Wk or Wv are added to potimizers!!!')
opt = torch.optim.AdamW(params, lr=lr)
return opt
def low_vram_shift(self, is_diffusing):
if is_diffusing:
self.model = self.model.cuda()
self.control_model = self.control_model.cuda()
self.first_stage_model = self.first_stage_model.cpu()
self.cond_stage_model = self.cond_stage_model.cpu()
else:
self.model = self.model.cpu()
self.control_model = self.control_model.cpu()
self.first_stage_model = self.first_stage_model.cuda()
self.cond_stage_model = self.cond_stage_model.cuda()