import torch from ..modules.midas.api import load_midas_transform class AddMiDaS(object): def __init__(self, model_type): super().__init__() self.transform = load_midas_transform(model_type) def pt2np(self, x): x = ((x + 1.0) * .5).detach().cpu().numpy() return x def np2pt(self, x): x = torch.from_numpy(x) * 2 - 1. return x def __call__(self, sample): # sample['jpg'] is tensor hwc in [-1, 1] at this point x = self.pt2np(sample['jpg']) x = self.transform({"image": x})["image"] sample['midas_in'] = x return sample