import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import torch import random import re import numpy as np import cv2 import einops import time from PIL import ImageFont from .cldm.model import create_model, load_state_dict from .cldm.ddim_hacked import DDIMSampler from .AnyText_t3_dataset import draw_glyph, draw_glyph2 from .AnyText_pipeline_util import check_channels, resize_image from pytorch_lightning import seed_everything from .AnyText_bert_tokenizer import BasicTokenizer import folder_paths from huggingface_hub import hf_hub_download from ..utils import is_module_imported, t5_translate_en_ru_zh checker = BasicTokenizer() BBOX_MAX_NUM = 8 PLACE_HOLDER = '*' max_chars = 20 comfyui_models_dir = folder_paths.models_dir class AnyText_Pipeline(): def __init__(self, ckpt_path, clip_path, translator_path, cfg_path, use_translator, device, use_fp16, all_to_device, loaded_model_tensor): self.device = device self.use_fp16 = use_fp16 self.translator_path = translator_path self.cfg_path = cfg_path if ckpt_path != 'None': ckpt_path = ckpt_path else: if os.access(os.path.join(comfyui_models_dir, "checkpoints", "15", "anytext_v1.1.safetensors"), os.F_OK): ckpt_path = os.path.join(comfyui_models_dir, "checkpoints", "15", "anytext_v1.1.safetensors") else: hf_hub_download(repo_id="Sanster/AnyText", filename="pytorch_model.fp16.safetensors",local_dir=os.path.join(comfyui_models_dir, "checkpoints", "15")) old_file = os.path.join(comfyui_models_dir, "checkpoints", "15", "pytorch_model.fp16.safetensors") new_file = os.path.join(comfyui_models_dir, "checkpoints", "15", "anytext_v1.1.safetensors") os.rename(old_file, new_file) ckpt_path = new_file if "Auto_DownLoad" not in clip_path: clip_path = clip_path else: clip_path = "openai/clip-vit-large-patch14" self.clip_path = clip_path self.ckpt_path = ckpt_path if loaded_model_tensor == None: self.model = create_model(self.cfg_path, cond_stage_path=self.clip_path, use_fp16=self.use_fp16) if self.use_fp16: self.model = self.model.half().to(self.device) if all_to_device == True: self.model.load_state_dict(load_state_dict(self.ckpt_path, location=device), strict=False) else: self.model.load_state_dict(load_state_dict(self.ckpt_path, location='cpu'), strict=False) else: self.model = loaded_model_tensor self.model.to(device) self.model.eval() self.ddim_sampler = DDIMSampler(self.model, device=self.device) if use_translator == True: #加载中译英模型,模型地址https://modelscope.cn/models/iic/nlp_csanmt_translation_zh2en if "utrobinmv/t5_translate_en_ru_zh_small_1024" in translator_path: self.trans_pipe = "utrobinmv/t5_translate_en_ru_zh_small_1024" else: self.zh2en_path = os.path.join(folder_paths.models_dir, "prompt_generator", "nlp_csanmt_translation_zh2en") if not os.access(os.path.join(self.zh2en_path, "tf_ckpts", "ckpt-0.data-00000-of-00001"), os.F_OK): self.zh2en_path = "damo/nlp_csanmt_translation_zh2en" if not is_module_imported('pipeline'): from modelscope.pipelines import pipeline if not is_module_imported('Tasks'): from modelscope.utils.constant import Tasks self.trans_pipe = pipeline(task=Tasks.translation, model=self.zh2en_path, device=self.device) else: self.trans_pipe = None def __call__(self, input_tensor, font_path, cpu_offload, **forward_params): if "Auto_DownLoad" not in font_path: font_path = font_path else: if os.access(os.path.join(comfyui_models_dir, "fonts", "SourceHanSansSC-Medium.otf"), os.F_OK): font_path = os.path.join(comfyui_models_dir, "fonts", "SourceHanSansSC-Medium.otf") else: hf_hub_download(repo_id="Sanster/AnyText", filename="SourceHanSansSC-Medium.otf",local_dir=os.path.join(comfyui_models_dir, "fonts")) font_path = os.path.join(comfyui_models_dir, "fonts", "SourceHanSansSC-Medium.otf") self.font = ImageFont.truetype(font_path, size=60, encoding='utf-8') tic = time.time() str_warning = '' # get inputs seed = input_tensor.get('seed', -1) if seed == -1: seed = random.randint(0, 99999999) seed_everything(seed) prompt = input_tensor.get('prompt') draw_pos = input_tensor.get('draw_pos') ori_image = input_tensor.get('ori_image') mode = forward_params.get('mode') use_fp16 = forward_params.get('use_fp16') Random_Gen = forward_params.get('Random_Gen') sort_priority = forward_params.get('sort_priority', '↕') show_debug = forward_params.get('show_debug', False) revise_pos = forward_params.get('revise_pos', False) img_count = forward_params.get('image_count', 1) ddim_steps = forward_params.get('ddim_steps', 20) w = forward_params.get('image_width', 512) h = forward_params.get('image_height', 512) strength = forward_params.get('strength', 1.0) cfg_scale = forward_params.get('cfg_scale', 9.0) eta = forward_params.get('eta', 0.0) a_prompt = forward_params.get('a_prompt', 'best quality, extremely detailed,4k, HD, supper legible text, clear text edges, clear strokes, neat writing, no watermarks') n_prompt = forward_params.get('n_prompt', 'low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture') prompt, texts = self.modify_prompt(prompt) if prompt is None and texts is None: return None, -1, "You have input Chinese prompt but the translator is not loaded!", "" n_lines = len(texts) if mode in ['text-generation', 'gen']: if Random_Gen == True: edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image edit_image = resize_image(edit_image, max_length=768) h, w = edit_image.shape[:2] else: edit_image = cv2.imread(draw_pos)[..., ::-1] edit_image = resize_image(edit_image, max_length=768) h, w = edit_image.shape[:2] edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image elif mode in ['text-editing', 'edit']: if draw_pos is None or ori_image is None: return None, -1, "Reference image and position image are needed for text editing!", "" if isinstance(ori_image, str): ori_image = cv2.imread(ori_image)[..., ::-1] assert ori_image is not None, f"Can't read ori_image image from{ori_image}!" elif isinstance(ori_image, torch.Tensor): ori_image = ori_image.cpu().numpy() else: assert isinstance(ori_image, np.ndarray), f'Unknown format of ori_image: {type(ori_image)}' edit_image = ori_image.clip(1, 255) # for mask reason edit_image = check_channels(edit_image) edit_image = resize_image(edit_image, max_length=768) # make w h multiple of 64, resize if w or h > max_length h, w = edit_image.shape[:2] # change h, w by input ref_img # preprocess pos_imgs(if numpy, make sure it's white pos in black bg) if draw_pos is None: pos_imgs = np.zeros((w, h, 1)) if isinstance(draw_pos, str): draw_pos = cv2.imread(draw_pos)[..., ::-1] draw_pos = resize_image(draw_pos, max_length=768) draw_pos = cv2.resize(draw_pos, (w, h)) assert draw_pos is not None, f"Can't read draw_pos image from{draw_pos}!" pos_imgs = 255-draw_pos elif isinstance(draw_pos, torch.Tensor): pos_imgs = draw_pos.cpu().numpy() else: assert isinstance(draw_pos, np.ndarray), f'Unknown format of draw_pos: {type(draw_pos)}' pos_imgs = pos_imgs[..., 0:1] pos_imgs = cv2.convertScaleAbs(pos_imgs) _, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY) # seprate pos_imgs pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority) if len(pos_imgs) == 0: pos_imgs = [np.zeros((h, w, 1))] if len(pos_imgs) < n_lines: if n_lines == 1 and texts[0] == ' ': pass # text-to-image without text else: return None, -1, f'Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!', '' elif len(pos_imgs) > n_lines: str_warning = f'Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt.' # get pre_pos, poly_list, hint that needed for anytext pre_pos = [] poly_list = [] for input_pos in pos_imgs: if input_pos.mean() != 0: input_pos = input_pos[..., np.newaxis] if len(input_pos.shape) == 2 else input_pos poly, pos_img = self.find_polygon(input_pos) pre_pos += [pos_img/255.] poly_list += [poly] else: pre_pos += [np.zeros((h, w, 1))] poly_list += [None] np_hint = np.sum(pre_pos, axis=0).clip(0, 1) # prepare info dict info = {} info['glyphs'] = [] info['gly_line'] = [] info['positions'] = [] info['n_lines'] = [len(texts)]*img_count gly_pos_imgs = [] for i in range(len(texts)): text = texts[i] if len(text) > max_chars: str_warning = f'"{text}" length > max_chars: {max_chars}, will be cut off...' text = text[:max_chars] gly_scale = 2 if pre_pos[i].mean() != 0: gly_line = draw_glyph(self.font, text) glyphs = draw_glyph2(self.font, text, poly_list[i], scale=gly_scale, width=w, height=h, add_space=False) gly_pos_img = cv2.drawContours(glyphs*255, [poly_list[i]*gly_scale], 0, (255, 255, 255), 1) if revise_pos: resize_gly = cv2.resize(glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0])) new_pos = cv2.morphologyEx((resize_gly*255).astype(np.uint8), cv2.MORPH_CLOSE, kernel=np.ones((resize_gly.shape[0]//10, resize_gly.shape[1]//10), dtype=np.uint8), iterations=1) new_pos = new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos contours, _ = cv2.findContours(new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) if len(contours) != 1: str_warning = f'Fail to revise position {i} to bounding rect, remain position unchanged...' else: rect = cv2.minAreaRect(contours[0]) poly = np.int0(cv2.boxPoints(rect)) pre_pos[i] = cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255. gly_pos_img = cv2.drawContours(glyphs*255, [poly*gly_scale], 0, (255, 255, 255), 1) gly_pos_imgs += [gly_pos_img] # for show else: glyphs = np.zeros((h*gly_scale, w*gly_scale, 1)) gly_line = np.zeros((80, 512, 1)) gly_pos_imgs += [np.zeros((h*gly_scale, w*gly_scale, 1))] # for show pos = pre_pos[i] info['glyphs'] += [self.arr2tensor(glyphs, img_count, use_fp16)] info['gly_line'] += [self.arr2tensor(gly_line, img_count, use_fp16)] info['positions'] += [self.arr2tensor(pos, img_count, use_fp16)] # get masked_x masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0)*(1-np_hint) masked_img = np.transpose(masked_img, (2, 0, 1)) masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device) # 确保模型在正确的设备上 self.model = self.model.to(self.device) # 将masked_img移动到正确的设备并设置正确的数据类型 masked_img = masked_img.to(self.device) if self.use_fp16: masked_img = masked_img.half() else: masked_img = masked_img.float() encoder_posterior = self.model.encode_first_stage(masked_img[None, ...]) masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach() if self.use_fp16: masked_x = masked_x.half() info['masked_x'] = torch.cat([masked_x for _ in range(img_count)], dim=0) hint = self.arr2tensor(np_hint, img_count, use_fp16) cond = self.model.get_learned_conditioning(dict(c_concat=[hint], c_crossattn=[[prompt + ' , ' + a_prompt] * img_count], text_info=info)) un_cond = self.model.get_learned_conditioning(dict(c_concat=[hint], c_crossattn=[[n_prompt] * img_count], text_info=info)) shape = (4, h // 8, w // 8) self.model.control_scales = ([strength] * 13) samples, intermediates = self.ddim_sampler.sample(ddim_steps, img_count, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=un_cond) if self.use_fp16: samples = samples.half() x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(img_count)] if len(gly_pos_imgs) > 0 and show_debug: glyph_bs = np.stack(gly_pos_imgs, axis=2) glyph_img = np.sum(glyph_bs, axis=2) * 255 glyph_img = glyph_img.clip(0, 255).astype(np.uint8) results += [np.repeat(glyph_img, 3, axis=2)] input_prompt = prompt for t in texts: input_prompt = input_prompt.replace('*', f'"{t}"', 1) print(f'Prompt: {input_prompt}') # debug_info if not show_debug: debug_info = '' else: debug_info = f'\033[93mPrompt(提示词): {input_prompt}\n\033[0m \ \033[93mSize(尺寸): {w}x{h}\n\033[0m \ \033[93mImage Count(生成数量): {img_count}\n\033[0m \ \033[93mSeed(种子): {seed}\n\033[0m \ \033[93mUse FP16(使用FP16): {self.use_fp16}\n\033[0m \ \033[93mUse Device(使用设备): {self.device}\n\033[0m \ \033[93mCost Time(生成耗时): {(time.time()-tic):.2f}s\033[0m' rst_code = 1 if str_warning else 0 if cpu_offload == True: self.model.to('cpu') else: if self.model != None: del self.model import gc gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() self.model = None return x_samples, results, rst_code, str_warning, debug_info, self.model def modify_prompt(self, prompt): prompt = prompt.replace('“', '"') prompt = prompt.replace('”', '"') p = '"(.*?)"' strs = re.findall(p, prompt) if len(strs) == 0: strs = [' '] else: for s in strs: prompt = prompt.replace(f'"{s}"', f' {PLACE_HOLDER} ', 1) if self.is_chinese(prompt): if self.trans_pipe is None: return None, None old_prompt = prompt if self.trans_pipe == "utrobinmv/t5_translate_en_ru_zh_small_1024": self.zh2en_path = os.path.join(folder_paths.models_dir, "prompt_generator", "models--utrobinmv--t5_translate_en_ru_zh_small_1024") if not os.access(os.path.join(self.zh2en_path, "model.safetensors"), os.F_OK): self.zh2en_path = "utrobinmv/t5_translate_en_ru_zh_small_1024" prompt = t5_translate_en_ru_zh('en', prompt + ' .', self.zh2en_path, self.device)[0] else: prompt = self.trans_pipe(input=prompt + ' .')['translation'][:-1] del self.trans_pipe if torch.cuda.is_available(): torch.cuda.empty_cache() print(f'Translate: {old_prompt} --> {prompt}') return prompt, strs def is_chinese(self, text): text = checker._clean_text(text) for char in text: cp = ord(char) if checker._is_chinese_char(cp): return True return False def separate_pos_imgs(self, img, sort_priority, gap=102): num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img) components = [] for label in range(1, num_labels): component = np.zeros_like(img) component[labels == label] = 255 components.append((component, centroids[label])) if sort_priority == '↕': fir, sec = 1, 0 # top-down first elif sort_priority == '↔': fir, sec = 0, 1 # left-right first components.sort(key=lambda c: (c[1][fir]//gap, c[1][sec]//gap)) sorted_components = [c[0] for c in components] return sorted_components def find_polygon(self, image, min_rect=False): contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) max_contour = max(contours, key=cv2.contourArea) # get contour with max area if min_rect: # get minimum enclosing rectangle rect = cv2.minAreaRect(max_contour) poly = np.int0(cv2.boxPoints(rect)) else: # get approximate polygon epsilon = 0.01 * cv2.arcLength(max_contour, True) poly = cv2.approxPolyDP(max_contour, epsilon, True) n, _, xy = poly.shape poly = poly.reshape(n, xy) cv2.drawContours(image, [poly], -1, 255, -1) return poly, image def arr2tensor(self, arr, bs, use_fp16): self.use_fp16 = use_fp16 arr = np.transpose(arr, (2, 0, 1)) _arr = torch.from_numpy(arr.copy()).float().to(self.device) if self.use_fp16: _arr = _arr.half() _arr = torch.stack([_arr for _ in range(bs)], dim=0) return _arr