77 lines
3.1 KiB
Python
77 lines
3.1 KiB
Python
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torchvision
|
||
|
from PIL import Image
|
||
|
from pytorch_lightning.callbacks import Callback
|
||
|
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
||
|
|
||
|
|
||
|
class ImageLogger(Callback):
|
||
|
def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
|
||
|
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
|
||
|
log_images_kwargs=None):
|
||
|
super().__init__()
|
||
|
self.rescale = rescale
|
||
|
self.batch_freq = batch_frequency
|
||
|
self.max_images = max_images
|
||
|
if not increase_log_steps:
|
||
|
self.log_steps = [self.batch_freq]
|
||
|
self.clamp = clamp
|
||
|
self.disabled = disabled
|
||
|
self.log_on_batch_idx = log_on_batch_idx
|
||
|
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
||
|
self.log_first_step = log_first_step
|
||
|
|
||
|
@rank_zero_only
|
||
|
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
|
||
|
root = os.path.join(save_dir, "image_log", split)
|
||
|
for k in images:
|
||
|
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
||
|
if self.rescale:
|
||
|
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
||
|
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
||
|
grid = grid.numpy()
|
||
|
grid = (grid * 255).astype(np.uint8)
|
||
|
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
|
||
|
path = os.path.join(root, filename)
|
||
|
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
||
|
Image.fromarray(grid).save(path)
|
||
|
|
||
|
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
||
|
check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
|
||
|
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
|
||
|
hasattr(pl_module, "log_images") and
|
||
|
callable(pl_module.log_images) and
|
||
|
self.max_images > 0):
|
||
|
logger = type(pl_module.logger)
|
||
|
|
||
|
is_train = pl_module.training
|
||
|
if is_train:
|
||
|
pl_module.eval()
|
||
|
|
||
|
with torch.no_grad():
|
||
|
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
|
||
|
|
||
|
for k in images:
|
||
|
N = min(images[k].shape[0], self.max_images)
|
||
|
images[k] = images[k][:N]
|
||
|
if isinstance(images[k], torch.Tensor):
|
||
|
images[k] = images[k].detach().cpu()
|
||
|
if self.clamp:
|
||
|
images[k] = torch.clamp(images[k], -1., 1.)
|
||
|
|
||
|
self.log_local(pl_module.logger.save_dir, split, images,
|
||
|
pl_module.global_step, pl_module.current_epoch, batch_idx)
|
||
|
|
||
|
if is_train:
|
||
|
pl_module.train()
|
||
|
|
||
|
def check_frequency(self, check_idx):
|
||
|
return check_idx % self.batch_freq == 0
|
||
|
|
||
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
||
|
if not self.disabled:
|
||
|
self.log_img(pl_module, batch, batch_idx, split="train")
|