365 lines
18 KiB
Python
Raw Permalink Normal View History

2024-09-25 15:18:31 +08:00
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import torch
import random
import re
import numpy as np
import cv2
import einops
import time
from PIL import ImageFont
from .cldm.model import create_model, load_state_dict
from .cldm.ddim_hacked import DDIMSampler
from .AnyText_t3_dataset import draw_glyph, draw_glyph2
from .AnyText_pipeline_util import check_channels, resize_image
from pytorch_lightning import seed_everything
from .AnyText_bert_tokenizer import BasicTokenizer
import folder_paths
from huggingface_hub import hf_hub_download
from ..utils import is_module_imported, t5_translate_en_ru_zh
checker = BasicTokenizer()
BBOX_MAX_NUM = 8
PLACE_HOLDER = '*'
max_chars = 20
comfyui_models_dir = folder_paths.models_dir
class AnyText_Pipeline():
def __init__(self, ckpt_path, clip_path, translator_path, cfg_path, use_translator, device, use_fp16, all_to_device, loaded_model_tensor):
self.device = device
self.use_fp16 = use_fp16
self.translator_path = translator_path
self.cfg_path = cfg_path
if ckpt_path != 'None':
ckpt_path = ckpt_path
else:
if os.access(os.path.join(comfyui_models_dir, "checkpoints", "15", "anytext_v1.1.safetensors"), os.F_OK):
ckpt_path = os.path.join(comfyui_models_dir, "checkpoints", "15", "anytext_v1.1.safetensors")
else:
hf_hub_download(repo_id="Sanster/AnyText", filename="pytorch_model.fp16.safetensors",local_dir=os.path.join(comfyui_models_dir, "checkpoints", "15"))
old_file = os.path.join(comfyui_models_dir, "checkpoints", "15", "pytorch_model.fp16.safetensors")
new_file = os.path.join(comfyui_models_dir, "checkpoints", "15", "anytext_v1.1.safetensors")
os.rename(old_file, new_file)
ckpt_path = new_file
if "Auto_DownLoad" not in clip_path:
clip_path = clip_path
else:
clip_path = "openai/clip-vit-large-patch14"
self.clip_path = clip_path
self.ckpt_path = ckpt_path
if loaded_model_tensor == None:
self.model = create_model(self.cfg_path, cond_stage_path=self.clip_path, use_fp16=self.use_fp16)
if self.use_fp16:
self.model = self.model.half().to(self.device)
if all_to_device == True:
self.model.load_state_dict(load_state_dict(self.ckpt_path, location=device), strict=False)
else:
self.model.load_state_dict(load_state_dict(self.ckpt_path, location='cpu'), strict=False)
else:
self.model = loaded_model_tensor
self.model.to(device)
self.model.eval()
self.ddim_sampler = DDIMSampler(self.model, device=self.device)
if use_translator == True:
#加载中译英模型模型地址https://modelscope.cn/models/iic/nlp_csanmt_translation_zh2en
if "utrobinmv/t5_translate_en_ru_zh_small_1024" in translator_path:
self.trans_pipe = "utrobinmv/t5_translate_en_ru_zh_small_1024"
else:
self.zh2en_path = os.path.join(folder_paths.models_dir, "prompt_generator", "nlp_csanmt_translation_zh2en")
if not os.access(os.path.join(self.zh2en_path, "tf_ckpts", "ckpt-0.data-00000-of-00001"), os.F_OK):
self.zh2en_path = "damo/nlp_csanmt_translation_zh2en"
if not is_module_imported('pipeline'):
from modelscope.pipelines import pipeline
if not is_module_imported('Tasks'):
from modelscope.utils.constant import Tasks
self.trans_pipe = pipeline(task=Tasks.translation, model=self.zh2en_path, device=self.device)
else:
self.trans_pipe = None
def __call__(self, input_tensor, font_path, cpu_offload, **forward_params):
if "Auto_DownLoad" not in font_path:
font_path = font_path
else:
if os.access(os.path.join(comfyui_models_dir, "fonts", "SourceHanSansSC-Medium.otf"), os.F_OK):
font_path = os.path.join(comfyui_models_dir, "fonts", "SourceHanSansSC-Medium.otf")
else:
hf_hub_download(repo_id="Sanster/AnyText", filename="SourceHanSansSC-Medium.otf",local_dir=os.path.join(comfyui_models_dir, "fonts"))
font_path = os.path.join(comfyui_models_dir, "fonts", "SourceHanSansSC-Medium.otf")
self.font = ImageFont.truetype(font_path, size=60, encoding='utf-8')
tic = time.time()
str_warning = ''
# get inputs
seed = input_tensor.get('seed', -1)
if seed == -1:
seed = random.randint(0, 99999999)
seed_everything(seed)
prompt = input_tensor.get('prompt')
draw_pos = input_tensor.get('draw_pos')
ori_image = input_tensor.get('ori_image')
mode = forward_params.get('mode')
use_fp16 = forward_params.get('use_fp16')
Random_Gen = forward_params.get('Random_Gen')
sort_priority = forward_params.get('sort_priority', '')
show_debug = forward_params.get('show_debug', False)
revise_pos = forward_params.get('revise_pos', False)
img_count = forward_params.get('image_count', 1)
ddim_steps = forward_params.get('ddim_steps', 20)
w = forward_params.get('image_width', 512)
h = forward_params.get('image_height', 512)
strength = forward_params.get('strength', 1.0)
cfg_scale = forward_params.get('cfg_scale', 9.0)
eta = forward_params.get('eta', 0.0)
a_prompt = forward_params.get('a_prompt', 'best quality, extremely detailed,4k, HD, supper legible text, clear text edges, clear strokes, neat writing, no watermarks')
n_prompt = forward_params.get('n_prompt', 'low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture')
prompt, texts = self.modify_prompt(prompt)
if prompt is None and texts is None:
return None, -1, "You have input Chinese prompt but the translator is not loaded!", ""
n_lines = len(texts)
if mode in ['text-generation', 'gen']:
if Random_Gen == True:
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image
edit_image = resize_image(edit_image, max_length=768)
h, w = edit_image.shape[:2]
else:
edit_image = cv2.imread(draw_pos)[..., ::-1]
edit_image = resize_image(edit_image, max_length=768)
h, w = edit_image.shape[:2]
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image
elif mode in ['text-editing', 'edit']:
if draw_pos is None or ori_image is None:
return None, -1, "Reference image and position image are needed for text editing!", ""
if isinstance(ori_image, str):
ori_image = cv2.imread(ori_image)[..., ::-1]
assert ori_image is not None, f"Can't read ori_image image from{ori_image}!"
elif isinstance(ori_image, torch.Tensor):
ori_image = ori_image.cpu().numpy()
else:
assert isinstance(ori_image, np.ndarray), f'Unknown format of ori_image: {type(ori_image)}'
edit_image = ori_image.clip(1, 255) # for mask reason
edit_image = check_channels(edit_image)
edit_image = resize_image(edit_image, max_length=768) # make w h multiple of 64, resize if w or h > max_length
h, w = edit_image.shape[:2] # change h, w by input ref_img
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
if draw_pos is None:
pos_imgs = np.zeros((w, h, 1))
if isinstance(draw_pos, str):
draw_pos = cv2.imread(draw_pos)[..., ::-1]
draw_pos = resize_image(draw_pos, max_length=768)
draw_pos = cv2.resize(draw_pos, (w, h))
assert draw_pos is not None, f"Can't read draw_pos image from{draw_pos}!"
pos_imgs = 255-draw_pos
elif isinstance(draw_pos, torch.Tensor):
pos_imgs = draw_pos.cpu().numpy()
else:
assert isinstance(draw_pos, np.ndarray), f'Unknown format of draw_pos: {type(draw_pos)}'
pos_imgs = pos_imgs[..., 0:1]
pos_imgs = cv2.convertScaleAbs(pos_imgs)
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY)
# seprate pos_imgs
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority)
if len(pos_imgs) == 0:
pos_imgs = [np.zeros((h, w, 1))]
if len(pos_imgs) < n_lines:
if n_lines == 1 and texts[0] == ' ':
pass # text-to-image without text
else:
return None, -1, f'Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!', ''
elif len(pos_imgs) > n_lines:
str_warning = f'Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt.'
# get pre_pos, poly_list, hint that needed for anytext
pre_pos = []
poly_list = []
for input_pos in pos_imgs:
if input_pos.mean() != 0:
input_pos = input_pos[..., np.newaxis] if len(input_pos.shape) == 2 else input_pos
poly, pos_img = self.find_polygon(input_pos)
pre_pos += [pos_img/255.]
poly_list += [poly]
else:
pre_pos += [np.zeros((h, w, 1))]
poly_list += [None]
np_hint = np.sum(pre_pos, axis=0).clip(0, 1)
# prepare info dict
info = {}
info['glyphs'] = []
info['gly_line'] = []
info['positions'] = []
info['n_lines'] = [len(texts)]*img_count
gly_pos_imgs = []
for i in range(len(texts)):
text = texts[i]
if len(text) > max_chars:
str_warning = f'"{text}" length > max_chars: {max_chars}, will be cut off...'
text = text[:max_chars]
gly_scale = 2
if pre_pos[i].mean() != 0:
gly_line = draw_glyph(self.font, text)
glyphs = draw_glyph2(self.font, text, poly_list[i], scale=gly_scale, width=w, height=h, add_space=False)
gly_pos_img = cv2.drawContours(glyphs*255, [poly_list[i]*gly_scale], 0, (255, 255, 255), 1)
if revise_pos:
resize_gly = cv2.resize(glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0]))
new_pos = cv2.morphologyEx((resize_gly*255).astype(np.uint8), cv2.MORPH_CLOSE, kernel=np.ones((resize_gly.shape[0]//10, resize_gly.shape[1]//10), dtype=np.uint8), iterations=1)
new_pos = new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos
contours, _ = cv2.findContours(new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if len(contours) != 1:
str_warning = f'Fail to revise position {i} to bounding rect, remain position unchanged...'
else:
rect = cv2.minAreaRect(contours[0])
poly = np.int0(cv2.boxPoints(rect))
pre_pos[i] = cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.
gly_pos_img = cv2.drawContours(glyphs*255, [poly*gly_scale], 0, (255, 255, 255), 1)
gly_pos_imgs += [gly_pos_img] # for show
else:
glyphs = np.zeros((h*gly_scale, w*gly_scale, 1))
gly_line = np.zeros((80, 512, 1))
gly_pos_imgs += [np.zeros((h*gly_scale, w*gly_scale, 1))] # for show
pos = pre_pos[i]
info['glyphs'] += [self.arr2tensor(glyphs, img_count, use_fp16)]
info['gly_line'] += [self.arr2tensor(gly_line, img_count, use_fp16)]
info['positions'] += [self.arr2tensor(pos, img_count, use_fp16)]
# get masked_x
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0)*(1-np_hint)
masked_img = np.transpose(masked_img, (2, 0, 1))
masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device)
# 确保模型在正确的设备上
self.model = self.model.to(self.device)
# 将masked_img移动到正确的设备并设置正确的数据类型
masked_img = masked_img.to(self.device)
if self.use_fp16:
masked_img = masked_img.half()
else:
masked_img = masked_img.float()
encoder_posterior = self.model.encode_first_stage(masked_img[None, ...])
masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach()
if self.use_fp16:
masked_x = masked_x.half()
info['masked_x'] = torch.cat([masked_x for _ in range(img_count)], dim=0)
hint = self.arr2tensor(np_hint, img_count, use_fp16)
cond = self.model.get_learned_conditioning(dict(c_concat=[hint], c_crossattn=[[prompt + ' , ' + a_prompt] * img_count], text_info=info))
un_cond = self.model.get_learned_conditioning(dict(c_concat=[hint], c_crossattn=[[n_prompt] * img_count], text_info=info))
shape = (4, h // 8, w // 8)
self.model.control_scales = ([strength] * 13)
samples, intermediates = self.ddim_sampler.sample(ddim_steps, img_count,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=un_cond)
if self.use_fp16:
samples = samples.half()
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(img_count)]
if len(gly_pos_imgs) > 0 and show_debug:
glyph_bs = np.stack(gly_pos_imgs, axis=2)
glyph_img = np.sum(glyph_bs, axis=2) * 255
glyph_img = glyph_img.clip(0, 255).astype(np.uint8)
results += [np.repeat(glyph_img, 3, axis=2)]
input_prompt = prompt
for t in texts:
input_prompt = input_prompt.replace('*', f'"{t}"', 1)
print(f'Prompt: {input_prompt}')
# debug_info
if not show_debug:
debug_info = ''
else:
debug_info = f'\033[93mPrompt(提示词): {input_prompt}\n\033[0m \
\033[93mSize(尺寸): {w}x{h}\n\033[0m \
\033[93mImage Count(生成数量): {img_count}\n\033[0m \
\033[93mSeed(种子): {seed}\n\033[0m \
\033[93mUse FP16(使用FP16): {self.use_fp16}\n\033[0m \
\033[93mUse Device(使用设备): {self.device}\n\033[0m \
\033[93mCost Time(生成耗时): {(time.time()-tic):.2f}s\033[0m'
rst_code = 1 if str_warning else 0
if cpu_offload == True:
self.model.to('cpu')
else:
if self.model != None:
del self.model
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.model = None
return x_samples, results, rst_code, str_warning, debug_info, self.model
def modify_prompt(self, prompt):
prompt = prompt.replace('', '"')
prompt = prompt.replace('', '"')
p = '"(.*?)"'
strs = re.findall(p, prompt)
if len(strs) == 0:
strs = [' ']
else:
for s in strs:
prompt = prompt.replace(f'"{s}"', f' {PLACE_HOLDER} ', 1)
if self.is_chinese(prompt):
if self.trans_pipe is None:
return None, None
old_prompt = prompt
if self.trans_pipe == "utrobinmv/t5_translate_en_ru_zh_small_1024":
self.zh2en_path = os.path.join(folder_paths.models_dir, "prompt_generator", "models--utrobinmv--t5_translate_en_ru_zh_small_1024")
if not os.access(os.path.join(self.zh2en_path, "model.safetensors"), os.F_OK):
self.zh2en_path = "utrobinmv/t5_translate_en_ru_zh_small_1024"
prompt = t5_translate_en_ru_zh('en', prompt + ' .', self.zh2en_path, self.device)[0]
else:
prompt = self.trans_pipe(input=prompt + ' .')['translation'][:-1]
del self.trans_pipe
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f'Translate: {old_prompt} --> {prompt}')
return prompt, strs
def is_chinese(self, text):
text = checker._clean_text(text)
for char in text:
cp = ord(char)
if checker._is_chinese_char(cp):
return True
return False
def separate_pos_imgs(self, img, sort_priority, gap=102):
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img)
components = []
for label in range(1, num_labels):
component = np.zeros_like(img)
component[labels == label] = 255
components.append((component, centroids[label]))
if sort_priority == '':
fir, sec = 1, 0 # top-down first
elif sort_priority == '':
fir, sec = 0, 1 # left-right first
components.sort(key=lambda c: (c[1][fir]//gap, c[1][sec]//gap))
sorted_components = [c[0] for c in components]
return sorted_components
def find_polygon(self, image, min_rect=False):
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
max_contour = max(contours, key=cv2.contourArea) # get contour with max area
if min_rect:
# get minimum enclosing rectangle
rect = cv2.minAreaRect(max_contour)
poly = np.int0(cv2.boxPoints(rect))
else:
# get approximate polygon
epsilon = 0.01 * cv2.arcLength(max_contour, True)
poly = cv2.approxPolyDP(max_contour, epsilon, True)
n, _, xy = poly.shape
poly = poly.reshape(n, xy)
cv2.drawContours(image, [poly], -1, 255, -1)
return poly, image
def arr2tensor(self, arr, bs, use_fp16):
self.use_fp16 = use_fp16
arr = np.transpose(arr, (2, 0, 1))
_arr = torch.from_numpy(arr.copy()).float().to(self.device)
if self.use_fp16:
_arr = _arr.half()
_arr = torch.stack([_arr for _ in range(bs)], dim=0)
return _arr